b) Cobres ligados

É a denominação que se aplica às ligas de cobre com baixo teor de liga, ou seja, aquelas nas quais os teores de todos os elementos de liga somados não ultrapassam 1 %. A função desses elementos, como o cádmio e o cromo, é aumentar a resistência mecânica do cobre sem reduzir muito sua condutividade elétrica. Em alguns casos são necessários tratamentos térmicos para aumentar a resistência mecânica dos cobres ligados.

Podem ser divididos em três grupos: a) cobres ligados de alta condutividade térmica e elétrica, b) cobres ligados de alta resistência mecânica, c) cobres ligados de alta usinabilidade. No primeiro grupo (a) encontra-se o cobre-prata tenaz (Cu-Ag IP) e o cobre-prata isento de oxigênio (Cu-Ag OF). O cobre-prata tenaz contém de 0,02 a 0,12 % de prata, que pode ser adicionada intencionalmente ou estar naturalmente contida na matéria-prima, e possui uma estrutura homogênea, já que para esses teores a prata permanece totalmente solubilizada no cobre. Este cobre ligado possui resistência mecânica e à fluência (em temperaturas relativamente elevadas) mais altas do que a maioria dos cobres de alta condutividade (90 a 100 % IACS). A adição de prata não afeta a condutividade elétrica e assim, na construção elétrica, na qual além de boa condutividade, exige-se alta resistência ao amolecimento pelo aquecimento e também a manutenção em altas temperaturas da resistência mecânica obtida pelo encruamento, pois essas temperaturas elevadas podem ser atingidas tanto devido às condições de funcionamento da peça, como devido à aplicação de processos de soldagem. Devido a essas características esse cobre ligado pode ser usado na construção mecânica, especificamente na fabricação de aletas de radiadores de automóveis e outros trocadores de calor. Já o cobre-prata isento de oxigênio possui características muito semelhantes às do cobre-prata tenaz, com a diferença de que pode ser aquecido em ambientes com atmosferas redutoras sem sofrer fragilização pelo hidrogênio. Esse tipo de cobre ligado é produzido por um processo de fusão específico que elimina a possibilidade da presença de óxidos e desoxidantes.

Entre os cobres ligados de alta resistência mecânica (b) encontram-se o cobre-arsênio desoxidado com fósforo (Cu-As DHP), o cobre-cromo e o cobre-zircônio (Cu-Zr). O cobre-arsênio contém arsênio em teores de 0,013 a 0,050 %, que tanto pode ser adicionado intencionalmente como estar presente como impureza proveniente da matéria-prima. A presença do arsênio favorece o aumento da resistência mecânica em temperaturas elevadas, como também aumenta a resistência à corrosão em determinados ambientes. É utilizado na construção química, para a fabricação de equipamentos e tubulações industriais que estão em contato com líquidos e gases relativamente pouco corrosivos e a temperaturas não muito elevadas. Na construção mecânica é usado em trocadores de calor, entretanto, sua baixa condutividade elétrica (35 a 45 % IACS) inviabiliza seu uso na construção elétrica. O cobre-cádmio (Cu-Cd) contém teores de cádmio de 0,6 a 1,0 %, o qual fica totalmente solubilizado no cobre. É usado nas aplicações nas quais se deseja que um condutor elétrico possua também boa resistência mecânica em geral, e particularmente ao desgaste e à fadiga. Embora sua resistência ao amolecimento durante aquecimento seja elevada, por outro lado sua condutividade elétrica é de cerca de 80 % IACS. Sendo assim, é usado na construção elétrica, na fabricação de cabos condutores aéreos sujeitos a esforços mecânicos, molas de contato, linhas de transmissão de alta resistência mecânica, conectores e componentes de chaves elétricas e outras aplicações como lamelas de coletores e eletrodos de soldagem elétrica. O cobre cádmio possui uma variante que é o cobre-cádmio-estanho (Cu-Cd-Sn), com cerca de 0,8 % de cádmio e 0,6 % de estanho e que possui características de fabricação muito semelhantes às do Cu-Cd, sendo usado na construção elétrica, na fabricação de molas e contatos elétricos, cabos condutores aéreos e eletrodos para soldagem elétrica. O cobre cromo (Cu-Cr), com teor de cromo por volta de 0,8 %, pode ter suas propriedades mecânicas melhoradas por tratamento térmico de solubilização e envelhecimento, endurecendo por precipitação. Apesar disso, sua condutividade elétrica é relativamente elevada, entre 80 e 85 % IACS, possuindo resistência ao amolecimento quando sujeito a temperaturas de até 400 ºC. è usado na construção elétrica em eletrodos de soldagem por resistência elétrica, chaves comutadoras e conectores. Na construção mecânica é usado na fabricação de moldes e em geral em aplicações nas quais se exige resistência mecânica e condutividade elétrica. O tratamento térmico de solubilização e envelhecimento pode ainda ser combinado com deformação plástica (encruamento): são os chamados tratamentos termomecânicos, que permitem a obtenção de dureza e resistência mecânica ainda mais elevadas do que as obtidas com o tratamento térmico tradicional sem deformação. No cobre-cromo semimanufaturado aquecido por 15 minutos a 1000 ºC e resfriado em água, assim solubilizado pode se aplicar a deformação plástica a frio (encruamento). Posteriormente realiza-se o envelhecimento mediante aquecimento entre 400 e 500 ºC, por tempos que dependem da temperatura (para 470 ºC, por exemplo, o tempo ideal é de cerca de 4 horas) de tal modo que o cromo se precipita em pequenas partículas finamente dispersas pela matriz de cobre. O cobre–zircônio (Cu-Zr) contém de 0,1 a 0,25 % de zircônio, sendo isento de oxigênio e, portanto, não suscetível à fragilização pelo hidrogênio. Este cobre ligado possui propriedades semelhantes às do Cu-Cr, porém níveis de resistência mecânica mais elevados, particularmente no que diz respeito à resistência ao amolecimento e à fluência. O limite de solubilidade do zircônio no cobre chega a 0,24 %, sendo possível a aplicação do tratamento térmico de solubilização e envelhecimento, que proporciona o chamado endurecimento por precipitação. A solubilização é realizada em temperaturas da ordem de 900 a 980 ºC e, após resfriamento rápido, o envelhecimento é realizado em temperaturas de 400 a 450 ºC em tempos de 1 a 2 horas, sendo que entre a solubilização e o envelhecimento pode ser realizada a deformação a frio em níveis de até 90% de redução em área ou em espessura. O tratamento térmico aumenta a condutividade elétrica do Cu-As, que neste caso pode atingir 90 % IACS. Na construção elétrica este tipo de cobre ligado é usado na fabricação de lamelas de comutadores sujeitas a solicitações severas, enrolamentos de motores elétricos severamente solicitados, bases de diodos, chaves comutadoras e eletrodos para soldagem elétrica.

Entre os cobres ligados de alta usinabilidade (c), podem ser relacionados o cobre- telúrio (Cu-Te), o cobre-enxofre (Cu-S) e o cobre-chumbo (Cu-Pb). O cobre-telúrio, assim como o cobre-enxofre e o cobre-selênio (Cu-Se), combina alta condutividade elétrica com boa usinabilidade. O telúrio, assim como o enxofre e o selênio, forma com o cobre compostos estáveis, que ficam distribuídos na matriz de cobre como partículas finamente dispersas. A presença destas partículas não provoca aumento acentuado de dureza e nem a diminuição sensível da condutividade elétrica, porém facilita muito a usinagem do cobre, na medida em que as partículas dispersas de telureto de cobre (Cu2Te) na matriz de cobre favorecem a quebra do cavaco durante o corte do metal, reduzindo o atrito entre o cavaco e a ferramenta. O telúrio é adicionado em teores de 0,30 a 0,80 % ao cobre tenaz ou desoxidado com fósforo. O cobre-telúrio tenaz apresenta condutividade elétrica de 96 a 98 % IACS, enquanto no cobre-telúrio desoxidado com fósforo a condutividade elétrica atinge entre 92 e 94 % IACS. Por causa de uma limitada dissolução do telúrio no cobre ocorre um aumento de resistência ao amolecimento em temperaturas da ordem de 250 ºC no máximo. Na construção elétrica o Cu-Te é usado na fabricação de terminais de transformadores e de interruptores, contatos, conexões e em geral peças de circuitos que precisam simultaneamente de elevada condutividade elétrica e alta usinabilidade. O cobre é um metal de difícil usinagem, mas a adição de telúrio permite a fabricação de peças usinadas em tornos automáticos. Na construção mecânica em geral o Cu-Te pode ser usado na fabricação de parafusos, porcas e pinos, entre outros tipos de peças fabricadas em máquinas automáticas. O cobre-selênio (Cu-Se) possui características muito semelhantes às do cobre telúrio. O cobre-enxofre (Cu-S) contém de 0,20 a 0,50 % d enxofre e suas aplicações são semelhantes às do cobre-telúrio. A condutividade elétrica do Cu-S é da ordem de 93 a 95 % IACS e o índice de usinabilidade é de 85. O cobre-chumbo (Cu-Pb) apresenta teores de chumbo entre 0,8 e 1,2 % com o objetivo de aumentar a usinabilidade do cobre, pois além de favorecer a fácil quebra dos cavacos, as partículas de chumbo distribuídas no cobre possuem a capacidade de atuar como lubrificantes entre o cavaco e a ferramenta, reduzindo o desgaste da ferramenta por atrito. Este cobre ligado possui alta conformabilidade a frio, porém baixa conformabilidade a quente. Este material é usado na fabricação de componentes da construção elétrica que necessitam de elevada condutividade elétrica conjugada com alta usinabilidade como conectores, componentes de chaves e motores, parafusos e outros componentes usinados de alta condutividade elétrica [1].